ADVANCING THE STATE OF SOUND REINFORCEMENT

A driving force in concert sound reinforcement since its beginning, EV is dedicated to developing products that exceed the ever-higher expectations of audiences, performers, and production professionals the world over. We channel our industry-leading engineering experience and R&D resources towards product designs that push the art and science of sound forward, rather than following the pack.

To achieve our goal of creating a line array with the best acoustic and mechanical performance, we talked to dozens of touring professionals and combined their real-world insight with our decades of line-array know-how.

The result is the next generation of our legendary X-Line family, offering breakthrough new components that work together to surpass the performance of other competitive line arrays, and all in a more compact, flexible, and faster-to-set-up package.

Designed, engineered, and tested for ultimate reliability by Electro-Voice in the USA.

Table of Contents

X1 System Applications	5
X2 System Applications	6
X1-2/12	7–8
X2-2/12	9–10
X12-125 Flying Subwoofer	11–12
X12-128 Ground-stack Subwoofer	13–14
Rigging	15–16
Grids and Rigging Systems	17–18
Transport Systems	19–20
Line Array Prediction Software (LAPS 3)	21–22
Electronics	23–24
IRIS-NET	25–26

System Configurations

X1 Passive 1/4 System	27
X1 or X2 Bi-amp 1/4 System	28
X1 or X2 1/4 System with TOPS Expansion	29
X1 or X2 Bi-amp 1/2 System	30
X1 or X2 Bi-amp 3/4 System	31
X1 or X2 Bi-amp Full System	32
Passive X1 with X12-125F Ground Stack 1/8 System	33
Passive X1 with X12-125F 1/4 System	33
Passive X1 with X12-125F and X12-128 Large Ground Stack	34
Passive X1 with X12-125F and X12-128F 1/4 System	35
Biamp X2 with X12-125F & X12-128F 3/4 System	36
X1 System Applications

Fixed Installation

The X1-212 combines new EV acoustic and driver technology with outstanding value to deliver a compact line array solution for many installation venues. Its compact footprint is ideally suited for small to mid-sized spaces, especially where limited space is available for a sound reinforcement solution.

Its ability to operate in passive mode with its internal high-performance crossover network reduces the overall system cost and simplifies the installation in these applications.

The X1: performance combined with simplicity and value.

An ideal choice for...

- **SMALL AND MID-SIZED HOUSES OF WORSHIP**
- **SPORTS VENUE**
- **CORPORATE EVENTS**
- **CLUBS AND ENTERTAINMENT VENUES**

X2 System Applications

Live Sound and Touring

The X2-212 is a premium solution for demanding live sound reinforcement and fixed-install applications. The X2 is a two-way vertical line-array loudspeaker that can be used in a wide variety of applications where wide bandwidth, vertical and horizontal directivity control, and high efficiency are required in a compact, cost-effective package.

The bi-amp only X2 requires proprietary Electro-Voice FIR-Drive. FIR-Drive is the combination of brick wall crossovers, phase correction, finite impulse response (FIR) equalization filters, peak anticipation limiting, and thermal monitoring. These technologies yield superior, nearly inaudible transducer protection, with linear summation, smooth off-axis response, and unparalleled acoustical performance over the critical vocal and instrument ranges, regardless of array size.

The X2 delivers the SPL, bandwidth, and coverage needed for demanding applications, including:

- **LARGE HOUSES OF WORSHIP**
- **CONCERT AND TOUR SOUND EVENTS**
- **LOCAL AND REGIONAL AV RENTAL COMPANIES**
- **THEATER AND PERFORMING ARTS VENUES**
The X1-212 system combines innovative new technologies and time-saving features. The compact design of the X1 enables its use in a wide variety of applications.

The X1 is a two-way vertical line-array loudspeaker that can be used in a wide variety of applications where wide bandwidth, vertical and horizontal directivity control, and high efficiency are required in a compact, cost-effective package.

In passive mode, it is possible to configure X1 so that up to three elements are powered from a single amplifier channel, the necessary crossover and EQ functions accomplished with sophisticated internal passive networks. X1 can also operate in bi-amp mode.

The X1-212/90 system combines innovative new technologies and time-saving features. The compact design of the X1 enables its use in a wide variety of applications.

<table>
<thead>
<tr>
<th>SPECIFICATIONS</th>
<th>X1-212/90</th>
<th>X1-212/120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Range (-3 dB)</td>
<td>57 Hz - 16 kHz</td>
<td>57 Hz - 16 kHz</td>
</tr>
<tr>
<td>Horizontal Coverage:</td>
<td>90° horizontal</td>
<td>120° horizontal</td>
</tr>
<tr>
<td>System Sensitivity:</td>
<td>96 dB (1 W/1 m)</td>
<td>96 dB (1 W/1 m)</td>
</tr>
<tr>
<td>LF Transducer:</td>
<td>12” SMX2121</td>
<td>12” SMX2121</td>
</tr>
<tr>
<td>HF Transducer:</td>
<td>2 x 2” ND2R</td>
<td>2 x 2” ND2R</td>
</tr>
<tr>
<td>Configuration:</td>
<td>Passive, bi-amp</td>
<td>Passive, bi-amp</td>
</tr>
<tr>
<td>Enclosure Material:</td>
<td>EVCoat-coated birch plywood</td>
<td>EVCoat-coated birch plywood</td>
</tr>
<tr>
<td>Dimensions (H x W x D):</td>
<td>13.5” x 28.5” x 21.25” (342.9 cm x 72.39 cm x 53.66 cm)</td>
<td>13.5” x 28.5” x 21.25” (342.9 cm x 72.39 cm x 53.66 cm)</td>
</tr>
<tr>
<td>Net Weight:</td>
<td>92 lbs (41.73 kg)</td>
<td>92 lbs (41.73 kg)</td>
</tr>
</tbody>
</table>

X1 Plane-Wave Creation

EV’s new Wavefront-shaping Circular Hydra (WCH) design in the X1 mates with the newly designed ring-exit ND2R driver to provide a linear frequency output that extends beyond 16 kHz. The outward-curving channels in the Hydra align precisely with the driver exit to transfer acoustical energy more efficiently and shape the acoustic wave more precisely than previous designs. This combination delivers an extended, smooth HF output. When combined, this new circular Hydra and ring-exit ND2R combination deliver amazing performance in the medium-format HF driver class.

Mid-Band Hydra (MBH)

The 12” SMX woofer in the X1 is coupled to an EV-exclusive MBH device that effectively emulates the acoustic behavior of a double line of four 3” point sources to deliver superior mid-band coupling of the array while maintaining the efficiency, power, and bandwidth of a 12” transducer.

ND2R High-Frequency Driver

The ND2R is a new version of the ND2 compression driver. Its ring-shaped exit achieves more balanced energy input to the WCH, with extended high end and lower distortion compared to the current ND2.

Wavefront-Shaping Circular Hydra (WCH)

The revolutionary HF section in the X1 incorporates two new ND2R ring-exit high-output 2” titanium compression drivers coupled to a pair of WCH constant energy plane-wave generators on a waveguide optimized for high efficiency, uniform pattern control, and smooth, extended, linear response. The ring-coupled ND2R and WCH eliminate wave distortion, maximizing the acoustic output of this medium-format compression driver with in-phase summation past 16 kHz.

X1 Plane-Wave generator coupled to ND2R

Different-lengthed pathways to convert the spherical output of the compression driver into a plane wavefront.

ND2R High-Frequency Driver

The ND2R is a new version of the ND2 compression driver. Its ring-shaped exit achieves more balanced energy input to the WCH, with extended high end and lower distortion compared to the current ND2.
The X2-212 system provides high SPL capability, extended HF response, and linear LF output for more performance than previously possible from an extremely compact cabinet.

The X2 is a two-way vertical line-array loudspeaker that achieves directional control that is similar to the X1, but delivers even more output, lower distortion, and wider bandwidth from the same compact form factor.

The advanced acoustical and mechanical designs of X2, combined with LAPS 3, provide the tools and flexibility to easily design and deploy high-performance vertical line-array systems.

Specifications

X2-212/90

<table>
<thead>
<tr>
<th>Frequency Response (-3 dB)</th>
<th>52 Hz – 19 kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal Coverage:</td>
<td>90° horizontal</td>
</tr>
<tr>
<td>System Sensitivity:</td>
<td>101 dB (1 W/1 m)</td>
</tr>
<tr>
<td>LF Transducer:</td>
<td>DVN3125</td>
</tr>
<tr>
<td>HF Transducer:</td>
<td>2 x 3" ND6A</td>
</tr>
<tr>
<td>Configuration:</td>
<td>Bi-amp only</td>
</tr>
<tr>
<td>Enclosure Material:</td>
<td>EVCoat-coated birch plywood</td>
</tr>
<tr>
<td>Dimensions (H x W x D):</td>
<td>13.5" x 28.5" x 21.25" (34.29 cm x 72.39 cm x 53.66 cm)</td>
</tr>
<tr>
<td>Net Weight:</td>
<td>93 lbs (42.18 kg)</td>
</tr>
</tbody>
</table>

X2-212/120

The state-of-the-art X2 Pin Diffraction Hydra (PDH) delivers a flatter, more uniform wavefront and extends the linear HF output beyond 19 kHz. As the acoustic wave exits the ND6A driver and travels through the Hydra, the pins shape the wavefront so the resulting output is a uniformly shaped wall of acoustic energy at virtually any frequency throughout the HF range. When combined with the latest generation ND6A 3" HF driver, this large-format HF section delivers performance unmatched on the market today.

X2 Plane-Wave Creation

For low frequencies, the new, high-sensitivity DVN3125 woofer was developed using the latest Multiphysics software to optimize motor, suspension, and electrical design for very low distortion, high efficiency, and maximum intelligibility at high SPL. The DVN3125 is designed with optimized frequency response for line array performance.

DVN3125 Neodymium Woofer

The 12" DVN woofer in the X2 is coupled to an EV-exclusive MBH device that effectively emulates the acoustic behavior of a double line of four 3" point sources to deliver superior mid-band coupling of the array while maintaining the efficiency, power, and bandwidth of a 12" transducer.

Mid-Band Hydra (MBH)

To satisfy the most demanding system applications, the HF section of the X2-212 matches two ND6A high-output 3" titanium compression drivers to a pair of advanced PDH constant-energy plane-wave generators on a constant-directivity waveguide. The advanced PDH provides full control of the acoustic wave, nearly eliminating wave distortion with in-phase summation beyond 19 kHz. All array elements sum seamlessly together to deliver consistent pattern control and smooth, extended, linear response for any array configuration.
The X12-125F flying subwoofer – a dual 15-inch system equipped with high-output EV-engineered transducers with peak system power handling capability of 9600 Watts.

The X12-125F features the family’s innovative Integrated Rigging System for quick, secure and seamless deployment in arrays, and is sonically matched to the other members of the family: X1 and X2 (high-performance) full-range models, and the X12-128 ground-stacking dual 18-inch subwoofer.

The X12-125F can also be used in ground-stacked configurations, making it a versatile choice for rental companies and mobile applications, as well as fixed installations including live performance venues and houses of worship. Its compact birch enclosure is finished in EVCoat for superior durability.

PRELIMINARY SPECIFICATIONS

<table>
<thead>
<tr>
<th>Specification</th>
<th>X12-125F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Response (-3 dB)</td>
<td>39 - 220 Hz</td>
</tr>
<tr>
<td>Horizontal Coverage</td>
<td>Omni-directional</td>
</tr>
<tr>
<td>System Sensitivity</td>
<td>96 dB (1 W/1 m)</td>
</tr>
<tr>
<td>LF Transducer</td>
<td>2 x 15 in HPC4159</td>
</tr>
<tr>
<td>HF Transducer</td>
<td>NA</td>
</tr>
<tr>
<td>Configuration</td>
<td>Parallel Mode: Both woofers are internally wired in parallel on Pins 1+/1-. Dual Mode: Each woofer is wired separately on Pins 1+/1- and 2+/2-.</td>
</tr>
<tr>
<td>Enclosure Material</td>
<td>13-ply weather resistant birch with EVCoat, internally braced</td>
</tr>
<tr>
<td>Dimensions (H x W x D)</td>
<td>20.50 in x 43.44 in x 30.51 in (52.07 cm x 110.34 cm x 77.50 cm)</td>
</tr>
<tr>
<td>Net Weight</td>
<td>215 lb (97.5 kg)</td>
</tr>
</tbody>
</table>

The X-Line Advance X12-125F subwoofer produces high low-frequency impact and performance without losing musicality. It is truly a compact cabinet that delivers more LF output in a smaller footprint than other subwoofers available on the market.

In addition to its high output capability, the X12-125F is designed to acoustically match seamlessly with any X-Line Advance top cabinet as a ground stack subwoofer or as a flown subwoofer/LF array.
The X-Line Advance X12-128 subwoofer produces the greatest low-frequency impact and performance EV has ever developed.

Truly, the state-of-the-art in subwoofer design, this compact cabinet delivers more LF output in a smaller footprint than other subs available today. In addition to its extremely high output capability, the X12-128 is designed to acoustically match seamlessly with any X-Line Advance top cabinet as a ground-stacked sub. It offers superior configuration flexibility for easier system design and setup, making it the standout sub choice for any large-format live or installed audio application.

SPECIFICATIONS

- **X12-128**
 - Frequency Response (-3 dB): 27 – 200 Hz
 - Horizontal Coverage: Omni directional
 - System Sensitivity: 105 dB
 - LF Transducer: 2 x 18” DVF4180
 - HF Transducer: N/A
 - Configuration: Parallel, dual
 - Enclosure Material: EVCoat-coated birch plywood
 - Dimensions (H x W x D): 20.375” x 43.500” x 29.875” (51.75 cm x 110.49 cm x 75.88 cm)
 - Net Weight: 195 lbs (88.45 kg)

The X-Line Advance X12-128 subwoofer produces the greatest low-frequency impact and performance EV has ever developed.

Truly, the state-of-the-art in subwoofer design, this compact cabinet delivers more LF output in a smaller footprint than other subs available today. In addition to its extremely high output capability, the X12-128 is designed to acoustically match seamlessly with any X-Line Advance top cabinet as a ground-stacked sub. It offers superior configuration flexibility for easier system design and setup, making it the standout sub choice for any large-format live or installed audio application.

A broadside array is one in which a number of subwoofers are arranged in a row (or a row of stacked boxes), and the primary radiation is at right angles to the row. This is the typical sub arrangement seen in most stacked applications. In current practice, broadside arrays are overwhelmingly the most common form. The row might be straight, curved, or staircased.

When front-firing and rear-firing loudspeakers are combined in a single array, such as EV’s X10-128 in cardioid configuration, it is possible to develop advanced drive processing methods that optimize the acoustical output of the low frequency array to maintain a controlled directional pattern over the entire operating bandwidth of the subs. These cardioid settings use frequency-dependent delays (also called “all-pass filters”) to offset the effects of sound propagation around the cabinets.
The IRS (Integrated Rigging System) on X1 and X2 was developed as a faster, safer way of flying, aiming, and landing a large vertical array.

The individual elements are fastened together by spring-loaded captive twist-lock pins. The captive twist-lock pins are located at each of the four upper corners and two lower front corners of each box. The upper pins attach each box to the extended link bars of the box above it to a grid. The pins are locked in their retracted (open) position by grasping each pin knob and pulling out as far as it will go, then turning the knob left or right to lock the pin. The link bars of the box or grid above can then be dropped safely into the V-blocks located at the top corners of the aluminum rigging. There is no fumbling for pin holes because the V-blocks are designed so that the bars will seat themselves in the correct position. Once seated, the pins are engaged by simply twisting each knob to unlock, allowing the spring to fire the pin into position. Lower front link bars are released or retracted and locked into position the same way. Rear link bars are set to the desired splay angle position with standard quick-release pins.

The splay angle is selected by choosing corresponding holes in the white ANGLE SELECT sections of the rear rigging on each side (0°, 0.5°, 1°, 1.5°, 2°, 3°, 4°, 5°, 6°, 8°, 10°) as determined by LAPS 3. Unless the rigging is locked into a rigid configuration by secondary pins in the lower black ANGLE LOCK sections, the elements always default to 0° when lifted. Use of the bottom pull-up grid accessory enables the array to be easily compressed with each element stopping at its pre-selected splay angle. Smaller arrays may be rigidly pinned by lifting the rear of each box until it hits the pre-selected angle stop, then inserting a second pin per side into the appropriate hole in the ANGLE LOCK section. There is no fumbling for pin holes because when lifted, the rigging will stop at the pre-selected position.
Choosing a Grid Configuration

Grid choice is determined by the top grid angle in combination with the number of elements in the array and the splay angle between them. To determine which grid model will achieve your desired angle as well as the safety factor for your system, use LAPS 3 to design your array and observe all warnings and limitation messages displayed by the software.

No matter how large the system hang, the rigging design of the X-Line Advance system provides for an extremely high safety factor in any installation.

X12TC-GRID with pull-back to venue

X12TE-GRID using X12PU-BGK to pull-up to grid

X12TC-GRID Compact Grid

The X12TC-GRID compact grids are appropriate for arrays that do not require extreme up or down angles. It is rated for a maximum hang of up to 24 X1 or X2 elements. Use LAPS 3 to determine if X12TC-GRID combined with the number of elements will achieve the acoustical coverage in the venue at a safe working load.

X12TE-GRID Extended Grid

X12TE-GRID extended grid is available for flying arrays that require greater up or down angles than are possible with the X12TC-GRID compact grid. The front and rear link bars can be locked at three different locations along the side rails to facilitate the extreme up-angles sometimes required in venues with multiple high balconies. The additional length of the X12TE-GRID also enables more extreme down-angles from a single point than would otherwise be possible. Note that de-rating occurs as the angle becomes more extreme. Consult LAPS 3 for limitations in a particular array configuration. The X12TE-GRID is also required in order to use the X12PU-BGK pull-up grid to hang an array using the rear compression rigging method. The X12TE-GRID comes with two spreader bars to support two motors when the compression rigging method is used.

X12PU-BGK Pull-Up Kit

X12PU-BGK pull-up kit is used with the compression rigging method or when extreme down angles beyond the capabilities of the extended grid are required. This is a way to achieve extreme down angles, such as those that might be encountered in a distributed arena system. When using one (1) X12TC-GRID and one (1) X12PU-BGK in this fashion, the angle between the suspension lines must never be allowed to exceed 30°. For maximum angles, restrictions and limitations, consult LAPS 3 and follow all warning, limitations and restrictions recommended by the software.
X-LINE ADVANCE

Transport System

Next Generation Transport Systems

The X-Line Advance transport system consists of innovative dollies for both the top boxes and the subwoofers. They provide a fast and convenient foundation to move X-Line Advance hardware from point A to B. Designed for quick rigging and disassembly, the transport dollies for the top boxes and the subs fit neatly into a variety of cargo containers and vehicles anywhere on the globe. The dollies quickly break down and store easily during a performance and can be quickly configured when the time comes to move the whole rig out. The efficient packing design of the system saves both transport space and cost.

X-Line Advance is designed to be transported in most common truck pack configurations, from local rental trucks and vans to large interstate and international trucks.

X-LINE ADVANCE

Transport System

Dollies

X12T-DOLLY is designed to transport six X1 or X2 loudspeakers in two stacks of three loudspeakers, with grille-protecting panels and a solid cover which functions to protect the loudspeaker during transportation, allowing an additional dolly to be stacked on top. The X12T-DOLLY top cover also doubles as the ground-stack kit for up to six X1 or X2 loudspeakers.

The X12-128-DOLLY is designed to carry two subwoofers in a single dolly, with a protective top cover and bumper rails to protect subs; it also includes a ratchet strap to prevent subs from moving. The design allows another sub dolly to be stacked securely on top.
Line Array Prediction Software

Line Array Prediction Software 3 (LAPS 3)

LAPS 3 software is based on a completely new acoustic and mechanical computation engine called the Optimizer. The Optimizer provides a number of benefits in LAPS 3, and will allow the addition of significant new functions in the future.

Acoustics

LAPS 3 offers more accurate and detailed acoustical predictions than previous versions of the LAPS software. The Optimizer’s predictions are based on full high-resolution measured loudspeaker data. The use of this data provides much more precise prediction results, especially in the high frequencies.

Mechanics

The new X-Line Advance line-array loudspeaker family has a mechanically advanced rigging system that provides smoothly curved arrays at all angles. LAPS 3 fully supports this.

Support for Pullback-to-grid Arrays

The X-Line Advance family supports a new rigging mode in which a tension cable attached to the rear of the grid is used to pull the array into the desired arc. LAPS 3 fully supports this.

Selectable Rigging Safety Factor

The LAPS 3 Preferences page now allows the rigging load safety factor to be set to 8:1, 10:1, or 12:1, to accommodate differences in local regulations. The chosen safety factor is used in all array load-limit checks.

Improved RigPic

The RigPic has been upgraded to show the new features. It now also provides clearer indication of “unriggable” configurations as well, i.e. configurations that fail load-limit tests or otherwise should not be used.

Improved Diagnostic Messages

LAPS 3 rigging diagnostic messages have been made clearer and more informative.

Improved RigReport

The RigReport has been upgraded to be clearer and more compact, and to support the new features noted on this page.

Better Product Upgrades Support

LAPS 3 and its successors allow separate distributions of software and product data. In the future, users will be able to download and install LAPS data for new products without having to install new versions of the LAPS 3 software.

Acoustics

LAPS 3 offers more accurate and detailed acoustical predictions than previous versions of the LAPS software. The Optimizer’s predictions are based on full high-resolution measured loudspeaker data. The use of this data provides much more precise prediction results, especially in the high frequencies.

Array Main

Air Loss Estimator

Full Accounting for Air Absorption

The Optimizer takes air absorption fully into account, to provide much more accurate prediction of far-field array performance in large venues.

Loudspeaker Cable Loss Calculator

Selectable Rigging Safety Factor

The LAPS 3 Preferences page now allows the rigging load safety factor to be set to 8:1, 10:1, or 12:1, to accommodate differences in local regulations. The chosen safety factor is used in all array load-limit checks.

Improved RigPic

The RigPic has been upgraded to show the new features. It now also provides clearer indication of “unriggable” configurations as well, i.e. configurations that fail load-limit tests or otherwise should not be used.

Support for Pullback-to-grid Arrays

The X-Line Advance family supports a new rigging mode in which a tension cable attached to the rear of the grid is used to pull the array into the desired arc. LAPS 3 fully supports this.

Improved Diagnostic Messages

LAPS 3 rigging diagnostic messages have been made clearer and more informative.

Improved RigReport

The RigReport has been upgraded to be clearer and more compact, and to support the new features noted on this page.

Better Product Upgrades Support

LAPS 3 and its successors allow separate distributions of software and product data. In the future, users will be able to download and install LAPS data for new products without having to install new versions of the LAPS 3 software.
X-Line Advance brings a system approach to the market with DSP and amplification requirements to maximize system performance. The combination of IRIS-NET and OMNEO provide total system control, monitoring, and signal transport in one network. Multiple layers of back-up and redundancy make X-Line Advance a powerful system management and control solution for the permanent installation and live sound markets.

X1 Compatible Amplifiers

Amplification choices for X1 systems have been formatted for complete flexibility to match system configurations from small installations to full capability for large live sound venues.

X2 and X12 Compatible Amplifier

Amplification choices for X2 systems have been configured to match systems for installation venues and live sound, available as pre-configured packages for cross-rental and system expandability with common network topology recommendations. These packages maintain common system performance and tonality between venues and stages.

X1 Compatible Processors

Various choices of DSP are available to use with X1 loudspeakers. These processors allow for multiple system designs to match venues’ acoustical needs and budgets.

X2 Compatible Processors

X2 systems require a common DSP platform for system commonality in DSP and acoustical performance, from venue to venue. NetMax and the RCM-28 together efficiently integrate the signal chain. They take over the function of a common system access point for DANTE/OMNEO, AES/EBU, and PC Ethernet, linking system control with signal routing and distribution across the entire system.

1 Maximum recommended load is three (3) X2 elements biamped in parallel or two (2) X12-128 or X12-125F subwoofer cabinets per TG-7 amplifier.

2 Maximum recommended two (2) elements in parallel for a 4 ohm load.
The First Comprehensive Audio Control Solution from Front to Back.

From the introduction of the first IRIS (Intelligent Remote Integrated Supervision) software platform for amplifiers in 2002, Electro-Voice has been developing a robust audio control protocol and new innovative audio hardware. The first was the RL line of remote controlled amplifier products. These amplifiers offered an amazing level of user control and monitoring, which brought reliability and ease of use to a wide range of users. EV’s NetMax N8000 digital audio system controller, together with the advanced RCM-28 DSP module for TG amplifiers, delivers a robust Ethernet compatible digital link in the IRIS-Net audio processing chain.

IRIS-Net is EV's answer to the ever-increasing complexity of audio system designs. It is a comprehensive software platform, which encompasses a huge array of control options. All aspects of the audio chain are under its supervision and control. The key areas of signal processing, supervision and signal routing are all manipulated under its shell.

The NetMax N8000 with the RCM-28 is the central player in the IRIS-Net solution. It offers an extremely flexible hardware platform that allows for field level customization of the unit to nearly any application. This customization goes far beyond what is available today from other platforms.

Everything from the matrix size and configuration to the processing power can be customized in the field, making it easy to design the best solution value for the customer.

OMNEO

Developed by EV's parent company Bosch, OMNEO media networking architecture allows the transport and easy control of audio, video, and other data over IP networks, satisfying the highest levels of both sound quality and synchronization whilst ensuring the lowest levels of latency — all in a highly reliable and secure setup. The use of standard IT components keeps installation, maintenance, and overall system costs competitively low.

OMNEO is based on two key technologies — the media transmission component Dante® and the system-control component OCA (Open Control Architecture) — and is enhanced by Bosch-specific features. OMNEO provides highest interoperability, flexibility, reliability, and future-proof technology by utilizing open public standards. Additionally, OMNEO comes with specific advanced features to even allow for mission-critical and life safety system applications. The technology provides a number of options for the interconnection of equipment from different manufacturers, and also those outside of traditional audio or intercom applications. An OMNEO media networking architecture can be scaled to include up to 10,000 nodes and can interoperate across multiple IP subnets and long distances for complex network designs and applications.

FIR-Drive

FIR-Drive is a combination of DSP and other EV technologies that come together to create a sophisticated loudspeaker correction and protection system. EV DSP, loudspeaker, and application engineers have been working together on this new technology for many years now, and have been constantly improving the technology with firmware, software, and speaker settings updates. The technology is modular and modules can be added to the package for further functionality. FIR-Drive has allowed EV engineers to improve and correct loudspeakers in ways unimaginable only a few years ago.

Proprietary to EV, the technology requires both software and hardware components to work at its maximum potential. EV has a number of loudspeaker management controllers that support the implementation at a variety of price points. Different styles of processors are available to meet the needs of any company or application.
System configurations listed in this guide are recommendations on how to set up a Glitch-Free topology network. This will allow for multiple layers of redundancy through OMNEO. By using OMNEO Primary, OMNEO Secondary, AES/EBU, OMNEO Ring, OMNEO Trunk, and Ethernet, you will have audio and control in the same wire, knowing you will have multiple layers of redundancy not just in your audio chain, but also system control. If you choose, you may also run and set up an additional layer of redundancy with an analog signal distribution directly to our TG7 amplifiers, creating six avenues for signal to be present at all times. In order to prevent a major network failure, make sure audio mixer is set up to Glitch-Free or whichever topology the audio network is built in, if not network will collapse and it will require resetting.
X-LINE ADVANCE
X-LINE Configurations

X1 or X2 1/4 System with TOPS Expansion Kit

X1 or X2 Bi-amp 1/2 System
Passive X1 with X12-125F & X12-128F 1/4 System

- X12-125F
- X1
- Network Switch
- X12-125F
- X1
- Network Switch
- X12-125F
- X1
- Network Switch

Biamp X2 with X12-125F & X12-128F 3/4 System

- X12-125F
- X3
- Network Switch
- X12-125F
- X3
- Network Switch
- X12-125F
- X3
- Network Switch